April 20, 2021 Volume 17 Issue 15

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Intro to reed switches, magnets, magnetic fields

This brief introductory video on the DigiKey site offers tips for engineers designing with reed switches. Dr. Stephen Day, Ph.D. from Coto Technology gives a solid overview on reed switches -- complete with real-world application examples -- and a detailed explanation of how they react to magnetic fields.
View the video.


Bi-color LEDs to light up your designs

Created with engineers and OEMs in mind, SpectraBright Series SMD RGB and Bi-Color LEDs from Visual Communi-cations Company (VCC) deliver efficiency, design flexibility, and control for devices in a range of industries, including mil-aero, automated guided vehicles, EV charging stations, industrial, telecom, IoT/smart home, and medical. These 50,000-hr bi-color and RGB options save money and space on the HMI, communicating two or three operating modes in a single component.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical collectors that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the overview.


Seifert thermoelectric coolers from AutomationDirect

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


EMI shielding honeycomb air vent panel design

Learn from the engineering experts at Parker how honeycomb air vent panels are used to help cool electronics with airflow while maintaining electromagnetic interference (EMI) shielding. Topics include: design features, cell size and thickness, platings and coatings, and a stacked design called OMNI CELL construction. These vents can be incorporated into enclosures where EMI radiation and susceptibility is a concern or where heat dissipation is necessary. Lots of good info.
Read the Parker blog.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Loss-free conversion of 3D/CAD data

CT CoreTech-nologie has further developed its state-of-the-art CAD converter 3D_Evolution and is now introducing native interfaces for reading Solidedge and writing Nx and Solidworks files. It supports a wide range of formats such as Catia, Nx, Creo, Solidworks, Solidedge, Inventor, Step, and Jt, facilitating smooth interoperability between different systems and collaboration for engineers and designers in development environments with different CAD systems.
Learn more.


Top 5 reasons for solder joint failure

Solder joint reliability is often a pain point in the design of an electronic system. According to Tyler Ferris at ANSYS, a wide variety of factors affect joint reliability, and any one of them can drastically reduce joint lifetime. Properly identifying and mitigating potential causes during the design and manufacturing process can prevent costly and difficult-to-solve problems later in a product lifecycle.
Read this informative ANSYS blog.


Advanced overtemp detection for EV battery packs

Littelfuse has introduced TTape, a ground-breaking over-temperature detection platform designed to transform the management of Li-ion battery systems. TTape helps vehicle systems monitor and manage premature cell aging effectively while reducing the risks associated with thermal runaway incidents. This solution is ideally suited for a wide range of applications, including automotive EV/HEVs, commercial vehicles, and energy storage systems.
Learn more.


Benchtop ionizer for hands-free static elimination

EXAIR's Varistat Benchtop Ionizer is the latest solution for neutralizing static on charged surfaces in industrial settings. Using ionizing technology, the Varistat provides a hands-free solution that requires no compressed air. Easily mounted on benchtops or machines, it is manually adjustable and perfect for processes needing comprehensive coverage such as part assembly, web cleaning, printing, and more.
Learn more.


LED light bars from AutomationDirect

Automation-Direct adds CCEA TRACK-ALPHA-PRO series LED light bars to expand their offering of industrial LED fixtures. Their rugged industrial-grade anodized aluminum construction makes TRACKALPHA-PRO ideal for use with medium to large-size industrial machine tools and for use in wet environments. These 120 VAC-rated, high-power LED lights provide intense, uniform lighting, with up to a 4,600-lumen output (100 lumens per watt). They come with a standard bracket mount that allows for angle adjustments. Optional TACLIP mounts (sold separately) provide for extra sturdy, vibration-resistant installations.
Learn more.


World's first metalens fisheye camera

2Pi Optics has begun commercial-ization of the first fisheye camera based on the company's proprietary metalens technology -- a breakthrough for electronics design engineers and product managers striving to miniaturize the tiny digital cameras used in advanced driver-assistance systems (ADAS), AR/VR, UAVs, robotics, and other industrial applications. This camera can operate at different wavelengths -- from visible, to near IR, to longer IR -- and is claimed to "outperform conventional refractive, wide-FOV optics in all areas: size, weight, performance, and cost."
Learn more.


Orbex offers two fiber optic rotary joint solutions

Orbex Group announces its 700 Series of fiber optic rotary joint (FORJ) assemblies, supporting either single or multi-mode operation ideal for high-speed digital transmission over long distances. Wavelengths available are 1,310 or 1,550 nm. Applications include marine cable reels, wind turbines, robotics, and high-def video transmission. Both options feature an outer diameter of 7 mm for installation in tight spaces. Construction includes a stainless steel housing.
Learn more.


Mini tunnel magneto-resistance effect sensors

Littelfuse has released its highly anticipated 54100 and 54140 mini Tunnel Magneto-Resistance (TMR) effect sensors, offering unmatched sensitivity and power efficiency. The key differentiator is their remarkable sensitivity and 100x improvement in power efficiency compared to Hall Effect sensors. They are well suited for applications in position and limit sensing, RPM measurement, brushless DC motor commutation, and more in various markets including appliances, home and building automation, and the industrial sectors.
Learn more.


Panasonic solar and EV components available from Newark

Newark has added Panasonic Industry's solar inverters and EV charging system components to their power portfolio. These best-in-class products help designers meet the growing global demand for sustainable and renewable energy mobility systems. Offerings include film capacitors, power inductors, anti-surge thick film chip resistors, graphite thermal interface materials, power relays, capacitors, and wireless modules.
Learn more.


Scientists think harnessing chaos can protect devices from hackers

Researchers have found a way to use chaos to help develop digital fingerprints for electronic devices that may be unique enough to foil even the most sophisticated hackers.

Just how unique are these fingerprints? The researchers believe it would take longer than the lifetime of the universe to test for every possible combination available.

"In our system, chaos is very, very good," said Daniel Gauthier, senior author of the study and professor of physics at The Ohio State University.

The study was recently published online in the journal IEEE Access.

The researchers created a new version of an emerging technology called physically unclonable functions, or PUFs, that are built into computer chips.

Gauthier said these new PUFs could potentially be used to create secure ID cards, to track goods in supply chains, and as part of authentication applications, where it is vital to know that you're not communicating with an impostor.

"The SolarWinds hack that targeted the U.S. government really got people thinking about how we're going to be doing authentication and cryptography," Gauthier said. "We're hopeful that this could be part of the solution."

The new solution makes use of PUFs, which take advantage of tiny manufacturing variations found in each computer chip -- variations so small that they aren't noticeable to the end user, said Noeloikeau Charlot, lead author of the study and a doctoral student in physics at Ohio State.

"There's a wealth of information in even the smallest differences found on computer chips that we can exploit to create PUFs," Charlot said.

These slight variations -- sometimes seen only at the atomic level -- are used to create unique sequences of 0s and 1s that researchers in the field call, appropriately enough, "secrets."

Other groups have developed what they thought were strong PUFs, but research showed that hackers could successfully attack them. The problem is that current PUFs contain only a limited number of secrets, Gauthier said.

"If you have a PUF where this number is 1,000 or 10,000 or even a million, a hacker with the right technology and enough time can learn all the secrets on the chip," Gauthier said. "We believe we have found a way to produce an uncountably large number of secrets to use that will make it next to impossible for hackers to figure them out, even if they had direct access to the computer chip."

The key to creating the improved PUF is chaos, a topic that Gauthier has studied for decades. No other PUFs have used chaos in the way demonstrated in this study, he said.

The researchers created a complex network in their PUFs using a web of randomly interconnected logic gates. Logic gates take two electric signals and use them to create a new signal.

"We are using the gates in a non-standard way that creates unreliable behavior. But that's what we want. We are exploiting that unreliable behavior to create a type of deterministic chaos," Gauthier said.

The chaos amplifies the small manufacturing variations found on the chip. Even the smallest differences, when amplified by chaos, can change the entire class of possible outcomes -- in this case, the secrets that are being produced, according to Charlot.

"Chaos really expands the number of secrets that are available on a chip. This will likely confuse any attempts at predicting the secrets," Charlot said.

One key to the process is letting the chaos run just long enough on the chip, according to Gauthier. If you let it run too long, it becomes -- well, too chaotic.

"We want the process to run long enough to create patterns that are too complex for hackers to attack and guess, but the pattern must be reproducible so we can use it for authentication tasks," Gauthier said.

The researchers calculated that their PUF could create 1077 secrets. How big is that number? Imagine if a hacker could guess one secret every microsecond -- 1 million secrets per second. It would take the hacker longer than the life of the universe, about 20 billion years, to guess every secret available in that microchip, Gauthier said.

As part of the study, the researchers attacked their PUF to see if it could be successfully hacked. They attempted machine learning attacks, including deep learning-based methods and model-based attacks -- all of which failed. They are now offering their data to other research groups to see if they can find a way to hack it.

Gauthier said the hope is that PUFs like this could help beef up security against even state-sponsored hacker attacks, which are generally very sophisticated and backed up with a lot of computer resources.

For example, Russia is suspected of backing the SolarWinds hack that was uncovered in December. That hack reportedly gained access to email accounts of officials in the Department of Homeland Security and the department's cybersecurity staff.

"It is a constant battle to come up with technology that can stay ahead of hackers. We are trying to come up with technology that no hacker -- no matter your resources, no matter what supercomputer you use -- will be able to crack," Gauthier said.

The researchers have applied for an international patent for their PUF device.

The goal of the team is to move beyond research and to move quickly to commercialize the technology. Gauthier and two partners recently founded Verilock, with a goal of bringing a product to market within a year.

"We see this technology as a real game changer in cybersecurity. This novel approach to a strong PUF could prove to be virtually un-hackable," said Jim Northup, CEO of Verilock.

Source: Ohio State University

Published April 2021

Rate this article

[Scientists think harnessing chaos can protect devices from hackers]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy